

|lal
د.يبعيا شـلمـان كمون

DC Biasing

الْـحاضر ة السـادسةٌ

References

Text Books :

1-ELECTRONIC DEVICES AND CIRCUIT THEORY
Eleventh Edition By
Robert L. Boylestad and Louis Nashelsky

2-ELECTRONIC DEVICES
Ninth Edition By
Thomas L. Floyd

DC Biasing

6- COMMON-BASE CONFIGURATION

The common-base configuration is unique in that the applied signal is connected to the emitter terminal and the base is at, or just above, ground potential. It is a fairly popular configuration because in the ac domain it has a very low input impedance, high output impedance, and good gain.
A typical common-base configuration appears in Fig. 4.49. Note that two supplies are used in this configuration and the base is the common terminal between the input emitter terminal and output collector terminal.
The dc equivalent of the input side of Fig. 4.49 appears in Fig. 4.50.

FIG. 4.49
Common-base configuration.

FIG. 4.50
Input dc equivalent of
Fig. 4.49.

DC Biasing

Applying Kirchhoff's voltage law will result in
$-V_{E E}+I_{E} R_{E}+V_{B E}=0$
$I_{E}=V_{E E}-V_{B E} / R_{E}$
Applying Kirchhoff's voltage law to the entire outside perimeter of the network of Fig. 4.51 will result in
$-V_{E E}+I_{E} R_{E}+V_{C E}+I_{C} R_{C}-V_{C C}=0$
and solving for $V_{C E}$:

$$
\begin{equation*}
V_{C E}=V_{E E}+V_{C C}-I_{E} R_{E}-I_{C} R_{C} \tag{4.47}
\end{equation*}
$$

Because $I_{E} \cong I_{C}$
$V_{C E}=V_{E E}+V_{C C}-I_{E}\left(R_{C}+R_{E}\right)$
The voltage $V_{C B}$ of Fig. 4.51 can be found by applying Kirchhoff's voltage law to the output loop of Fig 4.51 to obtain:

$$
\begin{align*}
& V_{C B}+I_{C} R_{C}-V_{C C}=0 \\
& \text { or } V_{C B}=V_{C C}-I_{C} R_{C} \\
& \text { Using } I C \cong I E \\
& \text { we have } V_{C B}=V_{C C}-I_{C} R_{C} \tag{4.48}
\end{align*}
$$

DC Biasing

EXAMPLE 4.17 Determine the currents I_{E} and I_{B} and the voltages $V_{C E}$ and $V_{C B}$ for the common-base configuration of Fig. 4.52 .

Solution:

$$
\begin{aligned}
I_{E} & =V_{E E}-V_{B E} / R_{E} \\
& =4 \mathrm{~V}-0.7 \mathrm{~V} / 1.2 \mathrm{k} \Omega \\
& =2.75 \mathrm{~mA} \\
I_{B} & =I_{E} /(\beta+1)=2.75 \mathrm{~mA} / 60+1=2.75 \mathrm{~mA} / 61 \\
& =45.08 \mu \mathrm{~A}
\end{aligned}
$$

FIG. 4.51
Determining $V_{C E}$ and $V_{C B}$.

Eq. 4.47: $\quad V_{C E}=V_{E E}+V_{C C}-I_{E}\left(R_{C}+R_{E}\right)$

$$
=4 \mathrm{~V}+10 \mathrm{~V}-(2.75 \mathrm{~mA})(2.4 \mathrm{k} \Omega+1.2 \mathrm{k} \Omega)
$$

$$
=14 \mathrm{~V}-(2.75 \mathrm{~mA})(3.6 \mathrm{k} \Omega)
$$

$$
=14 \mathrm{~V}-9.9 \mathrm{~V}
$$

$$
=4.1 \mathrm{~V}
$$

Eq. 4.48: $\quad V_{C B}=V_{C C}-I_{C} R_{C}=V_{C C}-\beta I_{B} R_{C}$
$=10 \mathrm{~V}-(60)(45.08 \mathrm{~mA})(24 \mathrm{k} \Omega)$
$=10 \mathrm{~V}-6.49 \mathrm{~V}$
$=3.51 \mathrm{~V}$

FIG. 4.52
Example 4.17.

DC Biasing

EXAMPLE 4.18 For the network of Fig. 4.53 :
a. Determine $I_{C Q}$ and $V_{C E Q}$
b. Find V_{B}, V_{C}, V_{E}, and $V_{B C}$

Solution:

a.The absence of \boldsymbol{R}_{E} reduces the reflection of resistive levels to simply that of \boldsymbol{R}_{C}, and the equation for I_{B} reduces to

$$
\begin{aligned}
I_{B} & =V_{C C}-V_{B E} / R_{B}+\beta R_{C} \\
& =20 \mathrm{~V}-0.7 \mathrm{~V} / 680 \mathrm{k}+(120)(4.7 \mathrm{k}) \\
& =19.3 \mathrm{~V} / 1.244 \mathrm{M} \Omega=15.51 \mu \mathrm{~A} \\
I_{C Q} & =\beta I_{B}=(120)(15.51 \mathrm{~mA}) \\
& =1.86 \mathrm{~mA} \\
V_{C E Q} & =V_{C C}-I_{C} R_{C} \\
& =20 \mathrm{~V}-(1.86 \mathrm{~mA})(4.7 \mathrm{k})=11.26 \mathrm{~V} \\
\text { b. } V_{B} & =V_{B E}=\mathbf{0 . 7 ~ V} \\
V_{C} & =V_{C E}=11.26 \mathrm{~V} \\
V_{E} & =0 \mathrm{~V} \\
V_{B C} & =V_{B}-V_{C}=0.7 \mathrm{~V}-11.26 \mathrm{~V} \\
& =-10.56 \mathrm{~V}
\end{aligned}
$$

FIG. 4.53
Collector feedback with $\boldsymbol{R}_{\boldsymbol{E}}=0 \boldsymbol{\Omega}$.

FIG. 4.54
Example 4.19.

DC Biasing

EXAMPLE 4.19 Determine V_{C} and V_{B} for the network of Fig. 4.54.
Solution: Applying Kirchhoff's voltage law in the clockwise direction for the baseemitter loop results in
$-I_{B} R_{B}-V_{B E}+V_{E E}=0$ and $I_{B}=V_{E E}-V_{B E} / R_{B}$
Substitution yields
$I_{B}=9 \mathrm{~V}-0.7 \mathrm{~V} / 100 \mathrm{k}$ $=8.3 \mathrm{~V} / 100 \mathrm{k}=83 \mu \mathrm{~A}$
$I_{C}=\beta I_{B}$
$=(45)(83 \mu \mathrm{~A})$
$=3.735 \mathrm{~mA}$
$V_{C}=-I_{C} R_{C}$
$=-(3.735 \mathrm{~mA})\left(1.2 \mathrm{k} _\right)$
$=-4.48 \mathrm{~V}$
$V_{B}=-I_{B} R_{B}$
$=-(83 \mathrm{~mA})(100 \mathrm{k})$

FIG. 4.54
Example 4.19.
$=-8.3 \mathrm{~V}$

EXAMPLE 4.20 Determine V_{C} and V_{B} for the network of Fig. 4.55.
Solution: The Thévenin resistance and voltage are determined for the network to the left
of the base terminal as shown in Figs. 4.56 and $4.57 . R_{\text {Th }}$

$$
R_{\text {Th }}=8.2 \mathrm{k} \| 2.2 \mathrm{k}=1.73 \mathrm{k}
$$

To find $E_{\text {Th }}$

$$
\begin{aligned}
I & =\left(V_{C C}+V_{E E}\right) /(R 1+R 2) \\
& =(20 \mathrm{~V}+20 \mathrm{~V}) /(8.2 \mathrm{k}+2.2 \mathrm{k}) \\
& =40 \mathrm{~V} / 10.4 \mathrm{k}- \\
& =3.85 \mathrm{~mA} \\
E_{\mathrm{Th}}= & I \times R_{2}-V_{E E} \\
= & (3.85 \mathrm{~mA})(2.2 \mathrm{k})-20 \mathrm{~V} \\
= & -11.53 \mathrm{~V}
\end{aligned}
$$

FIG. 4.56
Determining $R_{\text {Th }}$.

FIG. 4.57
Determining $E_{\text {Tb }}$.

DC Biasing

The network can then be redrawn as shown in Fig. 4.58 , where the application of Kirchhoff's voltage law results in

$$
-E_{\mathrm{Th}}-I_{B} R_{\mathrm{Th}}-V_{B E}-I_{E} R_{E}+V_{E E}=0
$$

Substituting $I_{E}=(\beta+1) I_{B}$ gives

$$
\begin{aligned}
& V_{E E}-E_{\text {Th }}-V_{B E}-(\beta+1) I_{B} R_{E}-I_{B} R_{\mathrm{Th}}=0 \\
& \text { And } I_{B}=V_{E E}-E_{\text {Th }}-V_{B E} / R_{\text {Th }}+(\beta+1) R_{E} \\
& =20 \mathrm{~V}-11.53 V-0.7 \mathrm{~V} / 1.73 \mathrm{k}+(121)(1.8 \mathrm{k}) \\
& =7.77 \mathrm{~V} / 219.53 \mathrm{k} \\
& =35.39 \mathrm{~mA} \\
& I_{C}=\beta I_{B} \\
& =(120)(35.39 \mathrm{~mA}) \\
& =4.25 \mathrm{~mA} \\
& V_{c}=V_{C C}-I_{C} R_{C} \\
& =20 \mathrm{~V} \text { - (4.25 mA) (2.7 k) } \\
& =8.53 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
V_{B} & =-E_{\mathrm{Th}}-I_{B} R_{\mathrm{Th}} \\
& =-(11.53 \mathrm{~V})-(35.39 \mathrm{~mA})(1.73 \mathrm{k}) \\
& =-11.59 \mathrm{~V}
\end{aligned}
$$

DC Biasing

4.10 SUMMARY TABLE

Table 4.1 is a review of the most common single-stage BJT configurations with their respective equations. Note the similarities that exist between the equations for the various configurations.

TABLE 4.1
BJT Bias Configurations

Type	Configuration	Pertinent Equations	
Fixed-bias		$\begin{aligned} I_{B} & =\frac{V_{C C}-V_{B E}}{R_{B}} \\ I_{C} & =\beta I_{B}, I_{E}=(\beta+1) I_{B} \\ V_{C E} & =V_{C C}-I_{C} R_{C} \end{aligned}$	
Emitter-bias		$\begin{aligned} I_{B} & =\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}} \\ I_{C} & =\beta I_{B}, I_{E}=(\beta+1) I_{B} \\ R_{i} & =(\beta+1) R_{E} \\ V_{C E} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \end{aligned}$	
Voltage-divider bias		$\begin{aligned} \text { EXACT: } & R_{\mathrm{Th}} & =R_{1} \\| R_{2}, E_{\mathrm{Th}}=\frac{R_{2} V_{C C}}{R_{1}+R_{2}} & \text { APPROXIMATE: } \beta R_{E} \geq 10 R_{2} \\ I_{B} & =\frac{E_{\mathrm{Th}}-V_{B E}}{R_{\mathrm{Th}}+(\beta+1) R_{E}} & V_{B} & =\frac{R_{2} V_{\alpha C}}{R_{1}+R_{2}}, V_{E}=V_{B}-V_{B E} \\ I_{C} & =\beta I_{B}, I_{E}=(\beta+1) I_{B} & I_{E} & =\frac{V_{E}}{R_{E}}, I_{B}=\frac{I_{E}}{\beta+1} \\ V_{C E} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right) & V_{C E} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \end{aligned}$	

DC Biasing

Collector-feedback		$\begin{aligned} I_{B} & =\frac{V_{C C}-V_{B E}}{R_{F}+\beta\left(R_{C}+R_{E}\right)} \\ I_{C} & =\beta I_{B} I_{E}=(\beta+1) I_{B} \\ V_{C E} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \end{aligned}$
Emitter-follower		$\begin{aligned} I_{B} & =\frac{V_{E E}-V_{B E}}{R_{B}+(\beta+1) R_{E}} \\ I_{C} & =\beta I_{B}, I_{E}=(\beta+1) I_{B} \\ V_{C E} & =V_{E E}-I_{E} R_{E} \end{aligned}$
Common-base		$\begin{aligned} I_{E} & =\frac{V_{E E}-V_{B E}}{R_{E}} \\ I_{B} & =\frac{I_{E}}{\beta+1}, I_{C}=\beta I_{B} \\ V_{C E} & =V_{E E}+V_{C C}-I_{E}\left(R_{C}+R_{E}\right) \\ V_{C B} & =V_{C C}-I_{C} R_{C} \end{aligned}$

DC Biasing

7- DESIGN OPERATIONS

The design process is one where a current and/or voltage may be specified and the elements required to establish the designated levels must be determined.
One of the most powerful equations is simply Ohm's law in the following form:

$$
R_{\text {unknown }}=V_{R} / I_{R}
$$

In a particular design the voltage across a resistor can often be determined from specified levels. If additional specifications define the current level, Eq. (4.49) can then be used to calculate the required resistance level. The first few examples will demonstrate how particular
elements can be determined from the design specifications. A complete design procedure will then be introduced for two popular configurations.

DC Biasing

EXAMPLE 4.21 Given the device characteristics of Fig. 4.59a, determine $V_{C O}, \boldsymbol{R}_{B}$, and \boldsymbol{R}_{C} for the fixed-bias configuration of Fig. 4.59b .

Solution: From the load line
$V_{C C}=20 \mathrm{~V}$
$I C=V_{C C} / \boldsymbol{R}_{C}$
$V_{C E}=0 \mathrm{~V}$
and $R_{C}=V_{C C} / I_{C}$

$$
=20 \mathrm{~V} / 8 \mathrm{~mA}=2.5 \mathrm{k}
$$

$$
I_{B}=\left(V_{C C}-V_{B E}\right) / R_{B}
$$

$$
R_{B}=V_{C C}-V_{B E} / I_{B}
$$

$=20 \mathrm{~V}-0.7 \mathrm{~V} / 40 \mathrm{~mA}$
$=19.3 \mathrm{~V} / 40 \mathrm{~mA}$

$$
=482.5 \mathrm{k} \Omega
$$

(a)

Standard resistor values are
$R_{C}=2.4 \mathrm{k}, R_{B}=470 \mathrm{k} \Omega$
(b)

Using standard resistor values gives
$I_{B}=41.1 \mathrm{~mA}$
which is well within 5% of the value specified.

DC Biasing

EXAMPLE 4.22 Given that $I_{C Q}=2 \mathrm{~mA}$ and $V_{C E Q}=10 \mathrm{~V}$, determine $R 1$ and R_{C} for the network of Fig. 4.60.

Solution:

$$
\begin{aligned}
& V_{E}=I_{E} R_{E} \cong I_{C} R_{E} \\
&=(2 \mathrm{~mA})(1.2 \mathrm{k})=2.4 \mathrm{~V} \\
& V_{B}=V_{B E}+V_{E}=0.7 \mathrm{~V}+2.4 \mathrm{~V}=3.1 \mathrm{~V} \\
& V_{B}=R_{2} V_{C C} /(R 1+R 2) \\
&=3.1 \mathrm{~V} \\
& \text { and } \\
& \quad(18 \mathrm{k})(18 \mathrm{~V}) / R 1+18 \mathrm{k}=3.1 \mathrm{~V} \\
& 324 \mathrm{k}=3.1 R 1+55.8 \mathrm{k} \\
& 3.1 R 1=268.2 \mathrm{k} \\
& R 1=268.2 \mathrm{k} / 3.1=86.52 \mathrm{k}
\end{aligned}
$$

FIG. 4.60 Example 4.22.

Eq. (4.49): $\quad R_{C}=V_{R C} / I_{C}$

$$
R_{C}=V_{c C}-V_{c} / I_{c}
$$

with

$$
V_{C}=V_{C E}+V_{E}=10 \mathrm{~V}+2.4 \mathrm{~V}=12.4 \mathrm{~V}
$$

and

$$
R_{C}=18 \mathrm{~V}-12.4 \mathrm{~V} / 2 \mathrm{~mA}
$$

$$
=2.8 \mathrm{k}
$$

DC Biasing

EXAMPLE 4.23 The emitter-bias configuration of Fig. 4.61 has the following specifications:
$I_{C Q}=(1 / 2) /$ sat, $/ C$ sat $=8 \mathrm{~mA}, V_{C}=18 \mathrm{~V}$, and $\beta=110$. Determine R_{C}, R_{E}, and R_{B}. Solution:

$$
\begin{aligned}
& I_{C Q}=(1 / 2) / C \text { sat }=4 \mathrm{~mA} \\
& R_{C}=V_{R C} / I_{C Q} \\
& =V_{c c}-V_{c} / I_{c o} \\
& =28 \mathrm{~V}-18 \mathrm{~V} / 4 \mathrm{~mA}=2.5 \mathrm{k} \\
& I_{C \text { sat }}=V_{C C} /\left(R_{C}+R_{E}\right) \\
& \text { and } R_{C}+R_{E}=V_{C C} / l_{\text {csat }} \\
& =28 \mathrm{~V} / 8 \mathrm{~mA}=3.5 \mathrm{k} \\
& R_{E}=3.5 \mathrm{k}-R_{C} \\
& =3.5 \mathrm{k}-2.5 \mathrm{k}=1 \mathrm{k} \\
& I_{B Q}=I_{C Q} / \beta=4 \mathrm{~mA} / 110=36.36 \mathrm{~mA} \\
& I_{B Q}=V_{C C}-V_{B E} /\left(R_{B}+(\beta+1) R_{E}\right) \\
& \text { and } \quad R_{B}+(\beta+1) R_{E}=V_{C C}-V_{B E} / I_{B C} \\
& \text { with } \quad R_{B}=\left(V_{C C}-V_{B E} / I_{B Q}\right)-(\beta+1) R_{E} \\
& =(28 \mathrm{~V}-0.7 \mathrm{~V} / 36.36 \mathrm{~mA})-(111)(1 \mathrm{k}) \\
& =(27.3 \mathrm{~V} / 36.36 \mathrm{~mA})-111 \mathrm{k} \\
& =639.8 \mathrm{k} \\
& \text { For standard values, } \\
& R C=2.4 \mathrm{k} \\
& R E=1 \mathrm{k} \\
& R B=620 \mathrm{k}
\end{aligned}
$$

