كلية مرينة ^{الع}لم الجامعة قسم هنرسة الحاسوب

محاضرات المرحلة الاولى لمادة الهندسة الالكترونية

المحاضرة السادسة

References Text Books :

> 1-ELECTRONIC DEVICES AND CIRCUIT THEORY Eleventh Edition By Robert L. Boylestad and Louis Nashelsky

2-ELECTRONIC DEVICES Ninth Edition By Thomas L. Floyd

6- COMMON-BASE CONFIGURATION

The common-base configuration is unique in that the applied signal is connected to the emitter terminal and the base is at, or just above, ground potential. It is a fairly popular configuration because in the ac domain it has a very low input impedance, high output impedance, and good gain.

A typical common-base configuration appears in Fig. 4.49. Note that two supplies are used in this configuration and the base is the common terminal between the input emitter terminal and output collector terminal.

The dc equivalent of the input side of Fig. 4.49 appears in Fig. 4.50.

Applying Kirchhoff's voltage law will result in

 $-V_{EE} + I_E R_E + V_{BE} = 0$ $I_E = V_{EE} - V_{BE} / R_E$ (4.46)
Applying Kirchhoff's voltage law to the entire outside perimeter of the network
of Fig.4.51 will result in $-V_{EE} + I_E R_E + V_{CE} + I_C R_C - V_{CC} = 0$ and solving for V_{CE} : $V_{CE} = V_{EE} + V_{CC} - I_E R_E - I_C R_C$ Because $I_E \cong I_C$ $V_{CE} = V_{EE} + V_{CC} - I_E (R_C + R_E)$ (4.47)
The voltage V_{CB} of Fig. 4.51 can be found by applying Kirchhoff's voltage law to
the output loop of Fig 4.51 to obtain: $V_{CB} + I_C R_C - V_{CC} = 0$

or
$$V_{CB} = V_{CC} - I_C R_C$$

Using $IC \cong IE$
we have $V_{CB} = V_{CC} - I_C R_C$ (4.48)

EXAMPLE 4.17 Determine the currents I_E and I_B and the voltages V_{CE} and V_{CB} for the common-base configuration of Fig. 4.52.

Solution: $I_E = V_{EE} - V_{BE} / R_E$ V_{EE} $= 4 \text{ V} - 0.7 \text{ V} / 1.2 \text{ k}\Omega$ = 2.75 mA $I_{B} = I_{E} / (\beta + 1) = 2.75 \text{ mA} / 60 + 1 = 2.75 \text{ mA} / 61$ $= 45.08 \,\mu A$ Eq. 4.47: $V_{CF} = V_{FF} + V_{CC} - I_F (R_C + R_F)$ = 4 V + 10 V - (2.75 mA)(2.4 kΩ + 1.2 kΩ) $= 14 \text{ V} - (2.75 \text{ mA}) (3.6 \text{ k}\Omega)$ = 14 V - 9.9 V= 4.1 V $R_E \ge 1.2 \text{ k}\Omega$ $V_{CB} = V_{CC} - I_C R_C = V_{CC} - \beta I_B R_C$ Eq. 4.48: $= 10 \text{ V} - (60)(45.08 \text{ mA})(24 \text{ k}\Omega)$ = 10 V - 6.49 V FIG. 4.52 = 3.51 VExample 4.17.

DC Biasing

FIG. 4.51 Determining V_{CE} and V_{CB}.

EXAMPLE 4.18 For the network of Fig. 4.53 : a. Determine I_{CQ} and V_{CEQ} b. Find V_B , V_C , V_E , and V_{BC}

Solution:

a. The absence of R_E reduces the reflection of resistive levels to simply that of R_C , and the equation for I_B reduces to

$$I_{B} = V_{CC} - V_{BE} / R_{B} + \beta R_{C}$$

= 20 V - 0.7 V / 680 k + (120) (4.7 k)
= 19.3 V / 1.244 MΩ = 15.51 µA
$$I_{CQ} = \beta I_{B} = (120) (15.51 \text{ mA})$$

= 1.86 mA
$$V_{CEQ} = V_{CC} - I_{C}R_{C}$$

= 20 V - (1.86 mA)(4.7 k) = 11.26 V
b. $V_{B} = V_{BE} = 0.7 \text{ V}$
 $V_{C} = V_{CE} = 11.26 \text{ V}$
 $V_{E} = 0 \text{ V}$
 $V_{BC} = V_{B} - V_{C} = 0.7 \text{ V} - 11.26 \text{ V}$
= -10.56 V

FIG. 4.53 Collector feedback with $R_E = 0 \Omega$.

EXAMPLE 4.19 Determine V_C and V_B for the network of Fig. 4.54. Solution: Applying Kirchhoff's voltage law in the clockwise direction for the baseemitter loop results in

EXAMPLE 4.20 Determine V_C and V_B for the network of Fig. 4.55. Solution: The Thévenin resistance and voltage are determined for the network to the left

of the base terminal as shown in Figs. 4.56 and 4.57 $.R_{Th}$

The network can then be redrawn as shown in Fig. 4.58, where the application of Kirchhoff's voltage law results in

DC Biasing

$$-E_{Th} - I_{B}R_{Th} - V_{BE} - I_{E}R_{E} + V_{EE} = 0$$
Substituting $I_{E} = (\beta + 1) I_{B}$ gives
$$V_{EE} - E_{Th} - V_{BE} - (\beta + 1) I_{B}R_{E} - I_{B}R_{Th} = 0$$
And $I_{B} = V_{EE} - E_{Th} - V_{BE} / R_{Th} + (\beta + 1) R_{E}$

$$= 20 \text{ V} - 11.53 \text{ V} - 0.7 \text{ V} / 1.73 \text{ k} + (121)(1.8 \text{ k})$$

$$= 7.77 \text{ V} / 219.53 \text{ k}$$

$$= 35.39 \text{ mA}$$

$$I_{C} = \beta I_{B}$$

$$= (120)(35.39 \text{ mA})$$

$$= 4.25 \text{ mA}$$

$$V_{C} = V_{CC} - I_{C}R_{C}$$

$$= 20 \text{ V} - (4.25 \text{ mA})(2.7 \text{ k})$$

$$= 8.53 \text{ V}$$

$$V_{B} = -E_{Th} - I_{B}R_{Th}$$

$$= -(11.53 \text{ V}) - (35.39 \text{ mA})(1.73 \text{ k})$$

FIG. 4.58 Substituting the Thévenin equivalent circuit.

4.10 SUMMARY TABLE

 Table 4.1 is a review of the most common single-stage BJT configurations with their respective equations. Note the similarities that exist between the equations for the various configurations.

 TABLE 4.1

BJ1 Bias Conjigurations		
Туре	Configuration	Pertinent Equations
Fixed-bias		$I_B = \frac{V_{CC} - V_{BE}}{R_B}$ $I_C = \beta I_B, I_E = (\beta + 1)I_B$ $V_{CE} = V_{CC} - I_C R_C$
Emitter-bias		$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$ $I_C = \beta I_B, I_E = (\beta + 1)I_B$ $R_i = (\beta + 1)R_E$ $V_{CE} = V_{CC} - I_C (R_C + R_E)$
Voltage-divider bias	$\begin{array}{c} \circ V_{CC} \\ R_1 \\ R_2 \\ $	EXACT: $R_{\text{Th}} = R_1 \ R_2, E_{\text{Th}} = \frac{R_2 V_{CC}}{R_1 + R_2}$ APPROXIMATE: $\beta R_E \ge 10R_2$ $I_B = \frac{E_{\text{Th}} - V_{BE}}{R_{\text{Th}} + (\beta + 1)R_E}$ $V_B = \frac{R_2 V_{CC}}{R_1 + R_2}, V_E = V_B - V_{BE}$ $I_C = \beta I_B, I_E = (\beta + 1)I_B$ $I_E = \frac{V_E}{R_E}, I_B = \frac{I_E}{\beta + 1}$ $V_{CE} = V_{CC} - I_C (R_C + R_E)$ $V_{CE} = V_{CC} - I_C (R_C + R_E)$

7- DESIGN OPERATIONS

The design process is one where a current and/or voltage may be specified and the elements required to establish the designated levels must be determined.

One of the most powerful equations is simply Ohm's law in the following form:

 $R_{\text{unknown}} = V_R / I_R$ (4.49) In a particular design the voltage across a resistor can often be determined from specified levels. If additional specifications define the current level, Eq. (4.49) can then be used to calculate the required resistance level. The first few examples will demonstrate how particular

elements can be determined from the design specifications. A complete design procedure will then be introduced for two popular configurations.

EXAMPLE 4.21 Given the device characteristics of Fig. 4.59a , determine V_{CC} , R_B , and R_C for the fixed-bias configuration of Fig. 4.59b .

which is well within 5% of the value specified.

EXAMPLE 4.22 Given that I_{CQ} = 2 mA and V_{CEQ} = 10 V, determine R 1 and R_C for the network of Fig. 4.60.

Solution:

$$V_{E} = I_{E}R_{E} \cong I_{C}R_{E}$$

= (2 mA) (1.2 k) = 2.4 V
$$V_{B} = V_{BE} + V_{E} = 0.7 V + 2.4 V = 3.1 V$$
$$V_{B} = R_{2} V_{CC} / (R1 + R2)$$

= 3.1 V
and
(18 k) (18 V)/ R1 + 18 k = 3.1 V
324 k = 3.1R1 + 55.8 k
3.1R1 = 268.2 k
R1 = 268.2 k / 3.1 = **86.52 k**
Eq. (4.49): $R_{C} = V_{RC} / I_{C}$
 $R_{C} = V_{CC} - V_{C} / I_{C}$
with $V_{C} = V_{CE} + V_{E} = 10 V + 2.4 V = 12.4 V$
and $R_{C} = 18 V - 12.4 V / 2 mA$
= **2.8 k**

EXAMPLE 4.23 The emitter-bias configuration of Fig. 4.61 has the following specifications:

DC Biasing

 $I_{CQ} = (\frac{1}{2})$ /sat, ICsat = 8 mA, $V_C = 18$ V, and $\beta = 110$. Determine R_C , R_E , and R_B . Solution:

$$\begin{split} & I_{CQ} = (1/2) \ /C \text{sat} = 4 \text{ mA} \\ & R_{C} = V_{RC} / I_{CQ} \\ & = V_{CC} - V_{C} / I_{CQ} \\ & = 28 \text{ V} - 18 \text{ V} / 4 \text{ mA} = 2.5 \text{ k} \\ & I_{C \text{sat}} = V_{CC} / (R_{C} + R_{E}) \\ & \text{and} \ R_{C} + R_{E} = V_{CC} / I_{C \text{sat}} \\ & = 28 \text{ V} / 8 \text{ mA} = 3.5 \text{ k} \\ & R_{E} = 3.5 \text{ k} - R_{C} \\ & = 3.5 \text{ k} - 2.5 \text{ k} = 1 \text{ k} \\ & I_{BQ} = I_{CQ} / \beta = 4 \text{ mA} / 110 = 36.36 \text{ mA} \\ & I_{BQ} = V_{CC} - V_{BE} / (R_{B} + (\beta + 1) R_{E}) \\ & \text{and} \qquad R_{B} + (\beta + 1) R_{E} = V_{CC} - V_{BE} / I_{BQ} \\ & \text{with} \qquad R_{B} = (V_{CC} - V_{BE} / I_{BQ}) - (\beta + 1) R_{E} \\ & = (28 \text{ V} - 0.7 \text{ V} / 36.36 \text{ mA}) - (111)(1 \text{ k}) \\ & = (27.3 \text{ V} / 36.36 \text{ mA}) - 111 \text{ k} \\ & = 639.8 \text{ k} \\ \end{array}$$
For standard values, $RC = 2.4 \text{ k} \qquad RE = 1 \text{ k} \qquad RB = 620 \text{ k} \end{split}$